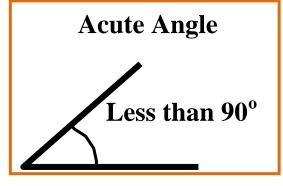
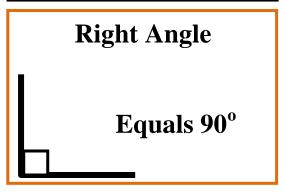
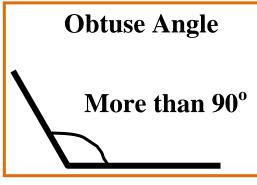
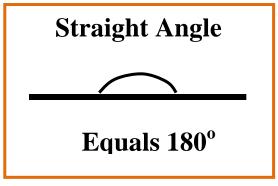
Math Garden Cards



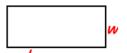






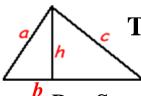
Developed for use with the Interactive Math Garden

Image Credits:


Shapes - http://math.about.com/library/blmeasurement.htm
Triangles - http://www.mathsisfun.com/triangle.html

Square

P = 4s


$$A = s^2$$

Rectangle

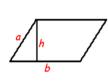
$$P = 21 + 2w$$

$$A = 1w$$

Triangle

P = Sum of sides

$$A = \frac{1}{2}(Bh)$$



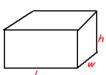
Circle

$$C = 2\pi r$$

$$A = \pi r^2$$

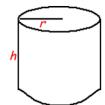
Parallelogram

P = Sum of sides


$$A = Bh$$

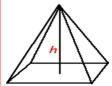
P = Sum of sides

$$A = \frac{1}{2}h (B_1 + B_2)$$


Rectangular Solid

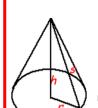
V = lwh

SA = Sum of areas of all faces

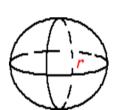

Cylinder

 $V = \pi r^2 h$

$$SA =$$


$$2\pi rh + 2\pi r^2$$

Pyramid


$$V = \frac{1}{3}Bh$$

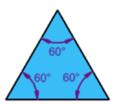
SA = Area of base + Area of all triangular faces

Cone

$$V = \frac{1}{3}\pi r^{2}h$$

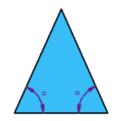
$$SA = \pi r^{2} + \pi rs$$

Sphere


$$V = 4/3\pi r^3$$
$$SA = 4\pi r^2$$

Prism

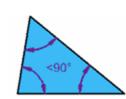
V = Bh SA = Sum of theareas of all faces


Equilateral Triangle

3 equal sides

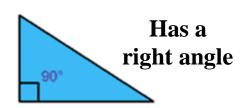
3 equal angles

Isosceles Triangle


2 equal sides

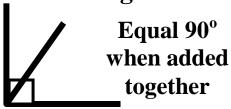
2 equal angles

Scalene Triangle



Acute Triangle

All angles less than 90°


Right Triangle

Obtuse Triangle

Complementary Angles

Supplementary Angles

Equal 180° when added together